
Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

IMPLEMENTING SPACE SYNTAX IN AN
OPEN SOURCE GIS: GRASS GIS approach

100

Wen-Chihe (Jeffrey) Wang
Chaoyang University of Technology
Hsin-Ju Liao
Chaoyang University of Technology

Abstract
Being a set of techniques for analyzing spatial patterns in buildings and cities, space
syntax has been implemented in various software of spatial analysis. Due to the
common requirement of handling spatial information, a significant portion of this spatial
analysis software is built upon a geographic information system (GIS). Although these
spatial analysis software may be available free of charge for academic or non-
commercial use, they have to run inside a proprietary GIS such as MapInfo or ArcView,
or a proprietary CAD such as AutoCAD or Microstation.

The emergence of free and open source software is one of the most significant
computer-related developments in recent years. The philosophy is about freedom,
which means users of such a computer program have the freedom to run it, study how it
works and adapt it to their needs, redistribute it, and improve it and release the
improvement to the public. This philosophy is particularly attractive to academia in that
knowledge embedded in such software will be preserved, disseminated, and further
developed regardless the commercial viability of the software. Linux operating system
and Apache HTTP server are two most well known examples of free and open source
software. In terms of GIS, Geographic Resources Analysis Support System (GRASS) is
the oldest and most popular full-fledged GIS released as free and open source software.
With the advent of GRASS 6 and its much improved vector map processing capabilities,
it became feasible to implement the space syntax techniques in an open source GIS.

This paper describes an experimental implementation of the space syntax techniques in
GRASS 6 that relies particularly on its vector network analysis modules and scripting
capability. To test the effectiveness of the implementation, a case study is conducted
using the same chosen study area but with two different street configurations, which are
before and after the development of a special district for a high-speed railway station in
the central part of Taiwan. The result shows that given the enormous capacities and
flexibility of GRASS, the implementation is rather straightforward and works as expected.
This demonstrates the true value of taking the open-source approach.

Introduction
How to analyze the built environment in a systematic manner has long
been the subject of research in related fields of various scales ranging
from interior design through architecture and landscape architecture to
urban design and planning. Space syntax is one of the popular

Keywords:
Space syntax
GIS
GRASS
Open source
Network analysis

Wen-Chihe (Jeffrey) Wang
Chaoyang University of
Technology, 168 Gifeng East
Road, Wufeng Township,,
Taichung County, 41349, Taiwan
jeffwang@cyut.edu.tw
Hsin-Ju Liao
Chaoyang University of
Technology, 168 Gifeng East
Road, Wufeng Township,,
Taichung County, 41349, Taiwan

Wang, Liao; Implementing Space Syntax in an Open Source GIS; GRASS GIS Approach

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

100-02

approaches used by researchers in recent years. It was first
conceived by Bill Hillier, Julienne Hanson, and colleagues at The
Bartlett, University College London (UCL) in the late 1970s. Being a
set of theories and techniques for the analysis of spatial configurations,
space syntax can not only be used as a tool to help architects
simulate the likely social effects of their designs, but also used in
fields where spatial configuration seems to play a significant role, such
as transportation, archaeology, information technology, urban and
human geography, and anthropology (Hillier, 1998; Space Syntax
Laboratory 2004a).

The basic idea behind space syntax is that it identifies the spatial
configuration of a study area as a network, where nodes represent a
unit of “space” and links represent connections between units of
spaces. Through this approach we can then treat the analysis of
spatial configuration as the well-established network analysis problem.
Mathematicians have been working on the network analysis problems
as early as the 18th century and accordingly developed the graph
theory, which is now commonly used in computer science and many
other fields where network analysis problems exist (Wikipedia
contributors 2006b). Therefore terms, concepts, and algorithms of
graph theory apply to space syntax as well.

Researches at UCL have implemented the space syntax techniques in
various spatial analysis software (Space Syntax Laboratory 2004b).
There is even more related spatial network analysis software
developed outside UCL (Wikipedia contributors 2006c). Although most
of this software is available free of charge for academic and non-
commercial use, only one is open source software. In addition,
because of the close relationship between space syntax and graphic
theory, topology, and geometry, many of the software work as add-on
or plug-in modules to a popular commercial computer-aided design
(CAD) or geographic information system (GIS) package to utilize their
fundamental capabilities. Those CAD or GIS are all proprietary and
none is open-sourced.

Table 1 summarizes the spatial network analysis software that is listed
on the Wikipedia web page. Table 1 shows that out of 14 options, at
least 8 of them required people who are interested in space syntax to
work on one particular platform. And for those who could not afford or
for whatever reasons would not work on a certain proprietary CAD or
GIS package, their options are rather limited.

However, this is exactly how an open source implementation of the
space syntax techniques can play a significant role. The emergence of
free and open source software is one of the most significant
computer-related developments in recent years. The philosophy is
about freedom, which means users of such a computer program have
the freedom to run it, study how it works and adapt it to their needs,
redistribute it, and improve it and release the improvement to the
public (Free Software Foundation, 2006). This philosophy is
particularly attractive to academia in that knowledge embedded in
such software will be preserved, disseminated, and further developed
regardless the commercial viability of the software. Linux operating
system and Apache HTTP server are two most well known examples
of free and open source software.

In terms of GIS, Geographic Resources Analysis Support System
(GRASS) is the oldest and most popular full-fledged GIS released as
free and open source software (Neteler & Mitasova 2002). Given the
capabilities, flexibility, and popularity of GRASS, it is a no-brainer to
choose GRASS as the platform to implement the space syntax
techniques. It is even more so after the release of GRASS 6 in 2005,
which has much improved vector map processing capabilities,

Wang, Liao; Implementing Space Syntax in an Open Source GIS; GRASS GIS Approach

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

100-03

including those critical vector-based network analysis modules
(GRASS Development Team, 2005).

The following portion of this paper first explains the basic concepts
that are necessary to implement the space syntax in GRASS 6. It then
describes the actual implementation in terms of the GRASS 6
modules and other UNIX utilities used. Finally it applies this
experimental implementation to a real urban environment in order to
test its effectiveness.

Basic Concepts
Definition of Space
The first step of using space syntax techniques to analyze spatial
configuration is to identify the “space” in the study area. In other words,
the study area needs to be break down into “spatial elements” in order
to analyze their configuration. Here a spatial element means a convex
empty area enclosed by objects such as wall, column, furniture, or
plants in terms of architecture or landscape architecture. Take a floor
plan of an apartment for example. There are some spatial elements
that can be easily identified, such as rooms, while there are some
spatial elements that cannot be identified easily, such as the corridor
that provides the common access to all rooms. Therefore the
originators of space syntax identify the spatial elements using the
definition of convexity in mathematics and therefore call them convex
space (Hillier, 1996). In mathematics a convex set means a set of
points containing all line segments between each pair of points.
Convex space is defined as “an occupiable void where, if imagined as
a wireframe diagram, no line between two of its points goes outside its
perimeter” (Wikipedia contributors 2006d). If the points represent
people in a place, a convex space means that the line of sight
between any two persons will never be blocked by the edge of the
space, i.e. all people can see each other.

The same technique can be used at various scales from the interior of
a small building to the open spaces in a city. To analyze the spatial
configuration of an urban environment comprising mostly of buildings
and streets, such as figure 1 shows, the way of identifying spatial
elements can be further adapted. Although identifying long narrow
streets as spatial elements works all right as shown in the left side of
the figure 1, it is more convenient to identify them as axial space, a
straight sight-line that also represents a possible path of movement.
Therefore, in an urban environment consisting of mostly streets, a
spatial element means a straight section of a street that is visible from
one end to the other without obstruction. The right side of the figure 1
shows the axial lines represent the same spatial elements identified in
the left side.

Figure 1:

Spatial configurations of
urban streets

Wang, Liao; Implementing Space Syntax in an Open Source GIS; GRASS GIS Approach

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

100-04

Connectivity of Space
The second step of using space syntax techniques to analyze spatial
configuration is to establish the “connectivity” of the spatial elements
identified in the first step. For a study area such as a floor plan,
identifying the connections or links among spaces is straightforward.
One needs simply look for doors or gates in the floor plan. If the study
area is in an urban environment, the connections or links among
spaces are where the two spaces overlap, or where two axial lines
cross, as identified by light gray circles in the right side of the figure 1.
After both spatial elements and their connectivity are identified, Hillier
(1996) suggested using a diagram called the justified graph, j-graph,
to clearly depict the spatial configuration of the study area. A j-graph is
similar to the diagram used in graph theory and network analysis that
uses points and lines to represent nodes and links, respectively, in a
network.

To depict the spatial configuration of an urban environment in a j-
graph, the concept of nodes and links may need some adjustment.
Take the study area shown in figure 1 for example. Although spatial
elements are represented by axial lines in the right side of the figure 1,
they should be represented by nodes instead, while connections are
represented by links as usual. A diagram that represents the spatial
configuration of the urban environment can be drawn as the one
shown in figure 2. This diagram is a modified j-graph that uses dark
gray circles to represent the northwest-southeast direction axial lines
and light gray circles to represent northeast-southwest direction axial
lines for easier identification of the original streets. This is where the j-
graph deviates from the diagram of typical network analysis such as a
road network where axial lines of roads are links and intersections of
axial lines are nodes.

Depth of Space
A j-graph of the study area reveals two types of information. First, it
shows the hierarchy of the spatial elements in terms of “depth” from
one particular element. Secondly the “total depth” of each node, i.e.
spatial element, in the j-graph can be calculated. According to Hillier
(1996), the depth from one node to the other is the sum of the number
of links in the shortest path between these two nodes. The total depth

Figure 2:

A spatial configuration
diagram of the area shown in
figure 1

Wang, Liao; Implementing Space Syntax in an Open Source GIS; GRASS GIS Approach

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

100-05

of a node is simply the sum of the depths to all other nodes. This is
the second point where the use of j-graph deviates from a typical
diagram for network analysis. In a regular network the length or travel
cost of a link is usually important, in space syntax however, the link is
only used to identify connectivity between spatial elements. Thus the
lengths or travel costs of links, which is called “depth” in space syntax,
are all treated the same and set to 1 (unity).

Empirical studies have shown that in a study area a spatial element
having a lower total depth means it is easier to navigate (Hillier 1996,
1998). If we color the spatial elements in figure 1 according to their
total depth, similar to those shown in figure 6 and 7, we can easily
discern how easily navigable a spatial element is. Hillier and others
further found that easy navigability is not only useful for settings where
way-finding is a significant issue, such as the design of museums,
airports, and hospitals, but also applicable to predict the correlation
between spatial layouts and social effects such as crime, traffic flow,
sales per unit area, etc (Wikipedia contributors 2006d). For example,
we can infer from figure 6 and 7 that where one is most likely to meet
and interact with other people in that study area. Such a map of total
depth shows the value of space syntax and explains why space
syntax has been a popular approach in analyzing built environment
since its inception.

Implementation
The Algorithm
In short, the ability of space syntax to measure the relative
connectivity of different spatial elements in a study area is through the
calculation of total depth for each element. The steps to calculate and
analyze the total depth of spatial elements in a study area are listed
as follows.

1. Identify spatial elements in a study area and draw them as axial
lines.

2. Identify connections between spatial elements and draw them as
links that connect each intersecting axial line pair by their midpoint.

3. From the finished graph of network, which is called “justified
graph,” or j-graph, find all shortest paths between each pair of
nodes.

4. The depth of a node to another node is the distance of the shortest
path between them, which is also the sum of the number of
individual links within the path because all links’ distances are set
to 1.

5. The total depth of a node, i.e. spatial element, is the sum of its
depths to all other nodes.

6. Inscribe the total depth of each node to the network, i.e. the j-graph.
Present the j-graph in a thematic manner such as graduated colors
or symbols.

7. Those spatial elements that have lower values of total depths
mean they have higher potential to be used by pedestrian because
of higher accessibility.

A GRASS Approach
Although the algorithm listed above is not complicated, when
performed manually it will be quite tedious and quickly become
insurmountable as the number of spatial elements increase. Therefore
it is necessary to have a computerized solution to carry out the
calculation of the total depths in order to use space syntax practically.

Wang, Liao; Implementing Space Syntax in an Open Source GIS; GRASS GIS Approach

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

100-06

As mentioned before, there have been many solutions for this purpose.
What this study does is not simply to reinvent the wheel but to develop
a solution under an open-source framework so that all benefits of
open-source software apply.

Given the aforementioned algorithm and the capabilities provided by
GRASS 6, this study implements a computerized space syntax
solution in the form of a standard operation procedure (SOP) to be
carried out in GRASS 6. The SOP is then automated by putting
together necessary commands and turning them into a UNIX Bash
shell script. Since it is a prototype, it is not yet a fully automated
solution and requires a few manual operations, such as digitizing the
axial lines. However it does perform similarly to another solution
based on ArcView, a popular proprietary GIS system, described by
Batty (1998).

Figure 3 summarizes the SOP that implements the algorithm
described in section 3.1 for calculating the total depth of a study area.
In figure 3, a parallelogram represents an input or output map, while a
rounded rectangle represents a process that includes several GRASS
commands or operations of related UNIX utilities. The following text
describes those processes in the order presented in figure 3.

Process 1

Process 1 creates the axial line map. This process first takes an
image of the base map as the input and starts the digitizing function to
let the user identify axial lines on the base map. Note that while in the
digitizing operation, the user should not create the map’s associated
attribute table. The user should also choose “insert no category” mode

Figure 3:

The standard operation
procedure

Wang, Liao; Implementing Space Syntax in an Open Source GIS; GRASS GIS Approach

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

100-07

and turn off the “insert new record into table” option. The category
number of each identified axial line is added by the v.category
command. Also note that when digitizing, in order to avoid ambiguity
and computing errors the endpoints of a line should not snap to any
other endpoints, that is, no endpoint is connected by more than one
line. The actual code listing follows.

d.mon x0
r.in.gdal base_map.jpg out=base_map
v.digit -n temp bgcmd="d.rgb red=base_map.red \
 green=base_map.green blue=base_map.blue"
v.category temp out=axial_map option=add
g.remove vect=temp
v.category axial_map option=report
d.vect axial_map display=shape,cat lcolor=black

Process 2

Process 2 creates the mid-point map. This process first sets the
database connection for all attribute tables to SQLite, which is a full-
function SQL open source database engine supported by GRASS. It
then adds the axial line map’s attribute table and prepares necessary
data. Finally it creates the map of midpoints of all axial lines from that
table using a UNIX utility called awk. The actual code listing follows.

db.connect driver=sqlite \
 database='$GISDBASE/$LOCATION_NAME/$MAPSET/sqlite
.db'
db.connect -p
v.db.addtable axial_map columns="L double,HL double, \
 X1 double,Y1 double,X2 double,Y2 double, \
 M double,B double,depth_sum int"
v.info axial_map
v.to.db axial_map type=line option=length col=L unit=me
v.db.update axial_map col=HL value=L/2
v.db.select -c axial map | awk '
 BEGIN {FS="|"} {print "P", $1, $1, $3}' | \
 v.segment axial_map out=am_mp
d.vect am_mp display=shape,cat icon=basic/circle color=green
lcolor=green

Process 3

Process 3 creates the joints map. This process first adds the midpoint
map’s attribute table and prepare axial line map’s attribute table for
further processing. It then identifies which line intersects with which
other lines and create the map comprising of intersection points of all
axial lines, the joints map. The actual code listing follows.

v.db.addtable am_mp columns="X double,Y double"
v.to.db am_mp option=coor col=X,Y
db.select am_mp -c > am_mp_tab.txt
v.to.db axial_map type=line option=start column=X1,Y1
v.to.db axial_map type=line option=end column=X2,Y2
v.db.update axial_map col=M value="(Y2-Y1)/(X2-X1)"
v.db.update axial_map col=B value="Y1-(M*X1)"
db.select axial_map
v.clean axial_map out=am_cleaned error=am_err tool=break
v.category am_err out=am_joints option=add
g.remove vect=am_err
d.vect am_joints display=shape,cat icon=basic/box \
 color=orange lcolor=orange

Wang, Liao; Implementing Space Syntax in an Open Source GIS; GRASS GIS Approach

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

100-08

Process 4

Process 4 takes both mid-point map and joints map as inputs to
create the links map. This process checks each point on the joints
map to find out the two axial lines passing through that point. It then
connects each pair of passing axial lines by their midpoints to create
the links map. The actual code listing follows.

v.db.addtable am_joints columns="X double,Y double"
v.to.db am_joints option=coor col=X,Y
db.select am_joints
rm am_joints.txt
np=`v.category am_joints option=report | awk '/point/ {print $2}'`
i=1
while [$i -le $np]
do
 echo "$i" > am_j_lines.txt
 echo "SELECT cat FROM axial_map WHERE
 (abs((SELECT Y FROM am_joints WHERE cat=$i) - \
 (M * (SELECT X FROM am_joints WHERE cat=$i)) -
B) < \
 0.0000001);" | sqlite3
$GISDBASE/$LOCATION_NAME/ \
 $MAPSET/sqlite.db >> am_j_lines.txt
 cat am_j_lines.txt | tr '\n' ' ' >> am_joints.txt
 echo "" >> am_joints.txt
 i=`expr $i + 1`
done
rm am_links.txt
nl=`awk 'END {print NR}' am_joints.txt`
i=1
while [$i -le $nl]
do
 P1=`awk '{if ($1 == I) {p1 = $2}} END {print p1}' I=$i
am_joints.txt`
 P2=`awk '{if ($1 == I) {p2 = $3}} END {print p2}' I=$i
am_joints.txt`
 echo "SELECT * FROM am_mp WHERE cat=$P1 OR
cat=$P2" | \
 db.select -c | awk '
 BEGIN { FS="|" ; print "L", "2", "1" }
 { print $2, $3 }
 END { print "1", I }' I=$i >> am_links.txt
 i=`expr $i + 1`
done
v.in.ascii -n am_links.txt out=am_links format=standard
d.vect am_links display=shape,cat color=blue

Process 5

Process 5 creates the network map required by the GRASS network
analysis modules. It then prepares the network map’s associated
attribute table for further processing. Note that the number of points in
the network map must equal to the number of lines in the axial line
map and the number of points in the mid-point map. Otherwise it
means that there are errors during the digitizing operation and
therefore the user should go back to fix the axial line map and restart
from process 1. The actual code listing follows.

v.net -c am_links out=am_net
d.erase
d.vect am_net display=shape,cat
d.vect am_net layer=2 display=shape,cat icon=basic/circle \

Wang, Liao; Implementing Space Syntax in an Open Source GIS; GRASS GIS Approach

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

100-09

 color=blue llayer=2 lcolor=blue
v.db.addtable am_net columns="arc_cost int"
v.db.update am_net column=arc_cost value=1
v.db.addtable am_net table=am_net_pt layer=2 columns="X
double,Y double,depth_sum int"
v.to.db am_net layer=2 option=coor col=X,Y
v.category am_net option=report
v.out.ascii am_net format=standard > am_net.txt

Process 6

Process 6 creates the final path map. This process first creates a text
file that lists all possible origin-destination combinations in the network
map. It then takes this file as input to create the path map showing the
shortest path between each origin-destination pair and that path’s
distance. Note that the user should look at the path map’s attribute
table to see if there are unreachable destinations, which usually imply
some problems in the previous processes. The actual code listing
follows.

rm am_od_pairs.txt
na=`v.category axial_map option=report | awk '/line/ {print $2}'`

count=0
i=1
while [$i -le $na]
do
 j=`expr $i + 1`
 while [$j -le $na]
 do
 count=`expr $count + 1`
 echo "$count $i $j" >> am_od_pairs.txt
 echo "$count $i $j"
 j=`expr $j + 1`
 done
 i=`expr $i + 1`
done
cat am_od_pairs.txt | v.net.path -s am_net out=am_path
afcol=arc_cost
db.select am_path > am_path_tab.txt

Process 7

Process 7 calculates the total depth of each axial line. Because each
link’s distance used to compute the shortest path in the path map has
been set to 1, the sum of each node’s shortest distances to all other
nodes is also the total depth of that node’s corresponding axial line.
The final calculation is to find the corresponding axial line of each
node, which is that axial line’s midpoint, and store the total depth
information into the axial line map’s attribute table for display and
analysis. The actual code listing follows.

na=`v.category axial_map option=report | awk '/line/ {print $2}'`
i=1
while [$i -le $na]
do
 sum=`db.select am_path | awk '
 BEGIN { FS = "|" }
 {if (($3 == point) || ($4 == point)) {s = s + $6}}
 END {print s}' point=$i`
 v.db.update am_net layer=2 column=depth_sum value=$sum
where="cat=$i"
 echo "Line $i depth sum = $sum"
 i=`expr $i + 1`

Wang, Liao; Implementing Space Syntax in an Open Source GIS; GRASS GIS Approach

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

100-10

done
db.select am_net_pt -c > am_net_pt_tab.txt
na=`v.category axial_map option=report | awk '/line/ {print $2}'`
i=1
while [$i -le $na]
do
 X=`echo "SELECT X FROM am_mp WHERE cat=$i" |
db.select -c`
 Y=`echo "SELECT Y FROM am_mp WHERE cat=$i" |
db.select -c`
 DS=`cat am_net_pt_tab.txt | awk '
 BEGIN {FS="|"}{if (($2 == x) && ($3 == y)) {ds = $4}}
 END {print ds}' x=$X y=$Y`
 v.db.update axial_map column=depth_sum value=$DS
where="cat=$i"
 echo $X $Y $DS
 i=`expr $i + 1`
done
db.select axial_map > axial_map_tab.txt
d.erase
d.vect.thematic -l axial_map type=line column=depth_sum \
 themetype=graduated_lines size=11 maxsize=3 nint=5
d.vect.thematic -l axial_map type=line column=depth_sum \
 colorscheme=red-blue nint=5

Verification
The Site
In order to test the effectiveness of the standard operation procedure
described in the previous section, we applies the experimental
implementation to the same chosen study area but with two different
street configurations, which are before and after the development of a
high-speed railway station. Figure 4 shows a recent satellite imagery
of the study area that has been developed according to the special
district plan of the Wu-ri high-speed railway station, while figure 5
shows the old street map of the same study area before developed.

Figure 4:

An old street map of the
study area
(©http://www.urmap.com)

Wang, Liao; Implementing Space Syntax in an Open Source GIS; GRASS GIS Approach

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

100-11

Results
Figure 6 through 8 show the results of calculating total depth of the
two different street configurations of the same study area using the
SOP described in session 3.

Figure 5:

A recent satellite imagery of
the study area
(©http://www.urmap.com)

Figure 6:

A thematic map of the total
depth of the old street
configuration

Figure 7:

A thematic map of the total
depth of the new street
configuration

Wang, Liao; Implementing Space Syntax in an Open Source GIS; GRASS GIS Approach

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

100-12

Discussion
The verification process shows that the implementation does work as
expected. However, the bottleneck of running the calculation turns out
to be portions of the Bash script, such as updating tables in the
database or calculating all possible combinations of the origin-
destination pairs. The v.net.path command operation that is originally
thought to be both resource-demanding and time-consuming run
surprisingly quick and efficient.

A significant issue of the current implementation is that digitizing the
axial lines is a tedious work and prone to error due to the current user
interface of the v.digit module. A temporary solution may be digitizing
the axial line using other tools, such as the open source Quantum GIS.
Besides, due to the current limitation of the d.vect.thematic module,
the presentation of the final results is not easily discernable, as
evident in figure 6 and 7. It would also be nice to see the thematic
vector display command be further refined soon.

Finally because the current implementation is purely experimental and
only tested in a few limited situations, the previously listed code may
not be as robust as other currently available options. Because there
is no any fault tolerance and exception handling mechanism in the
code, they should be carefully examined before each execution.

Conclusion
This experimental implementation of space syntax techniques in
GRASS proves that an open source alternative is a viable approach. It
provides people another platform-independent solution to use space
syntax techniques. Most importantly it is free, not only in terms of
money but also in terms of liberty. Anyone who is computer literate
and is given a couple hours of instruction can start to use this
implementation on a well-prepared machine immediately. Those who
are not afraid of using the command-line user interface and willing to
take the time to download, install, and learn the freely available
software can apply the space syntax techniques to their need,
regardless their platform of choice. Over time this may increase the
popularity of space syntax even further, especially in the developing
countries. Finally, because this implementation is only a proof-of-
concept, many improvements can be done. The greatest benefit of
being an open-source solution is that anyone who is interested and
willing to spend time on it can do his/her own improvement without
getting other’s permission or starting from scratch again.

Figure 8:

Comparison of the total
depth between old and new
configurations

Wang, Liao; Implementing Space Syntax in an Open Source GIS; GRASS GIS Approach

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

100-13

References
Batty, M., Dodge, M., Jiang, B., Smith, A., 1998, “GIS and Urban Design”,
Working Paper Series, paper 3, Centre for Advanced Spatial Analysis,
University College London, London, viewed 16 August 2006,
<http://www.casa.ucl.ac.uk/urbandesifinal.pdf>.

Free Software Foundation, 2006, The Free Software Definition, The GNU
Project, viewed 29 September 2006, <http://www.gnu.org/philosophy/free-
sw.html>.

GRASS Development Team, 2005, GRASS 6.0 Users Manual, ITC-irst,
Trento, viewed 16 August 2006, <http://grass.itc.it/grass60/manuals/html_
grass60>.

Hillier, B., 1998, “The Common Language of Space: A Way of Looking at the
Social, Economic and Environmental Functioning of Cities on a Common
Basis”, Space Syntax Laboratory, University College London, London, viewed
16 August 2006, <http://www.spacesyntax.org/publications/commonlang.
html>.

Hillier, B., 1996, Space is the Machine: A Configurational Theory of
Architecture, Cambridge University Press, Cambridge.

Neteler, M., Mitasova, H., 2002, Open Source GIS: A Grass GIS Approach,
Kluwer Academic Publishers, Boston.

Space Syntax Laboratory, 2004a, “Introduction”, Space Syntax Laboratory,
University College London, London, viewed 16 August 2006,
<http://www.spacesyntax.org/introduction/index.asp>.

Space Syntax Laboratory, 2004b, “Spatial Analysis Software”, Space Syntax
Laboratory, University College London, London, viewed 16 August 2006,
<http://www.spacesyntax.org/software/index.asp>.

Wikipedia contributors, 2006a, “Convex”, Wikipedia: The Free Encyclopedia,
viewed 17 August 2006, <http://en.wikipedia.org/w/index.php?title=Convex&
oldid=63532177>.

Wikipedia contributors 2006b, “Graph Theory”, Wikipedia: the Free
Encyclopedia, viewed 17 August 2006, <http://en.wikipedia.org/w/index.php?
title=Graph_theory&oldid=70023273>.

Wikipedia contributors, 2006c, “Spatial Network Analysis Software”,
Wikipedia: the Free Encyclopedia, viewed 17 August 2006,
<http://en.wikipedia.org/w/index.php?title=Spatial_network_analysis_software
&oldid=65091697>.

Wikipedia contributors, 2006d, “Space Syntax”, Wikipedia: the Free
Encyclopedia, viewed 17 August 2006, <http://en.wikipedia.org/w/index.php?
title=Space_syntax&oldid=43789685>.

Space Syntax Software Underlying Technology Cost Registration Open Source Type Ownership Platform

Ajanachara Free No Yes (GPL) Standalone N/A Linux, Windows
AJAX Free No No Standalone N/A Windows
AXess Free No No GIS: ArcView Proprietary Windows
Axman et al Free* Required No Standalone N/A Mac OS
Axwoman Free No No GIS: ArcView Proprietary Windows
Confeego Free* Required No GIS: MapInfo Proprietary Windows
Depthmap Free* Required No Standalone N/A Windows
Fathom Unknown Unknown Unknown Unknown Unknown Unknown
Isovist Analyst Free* No No GIS: ArcView Proprietary Windows

Mindwalk Free* Required No Java Proprietary
(Free) Independent

OmniVista Unknown Unknown Unknown Unknown Unknown Mac OS
OverView Unknown Unknown Unknown CAD: AutoCAD Proprietary Windows
Spatialist Unknown Unknown Unknown CAD: Microstation Proprietary Windows

Webmap Free Required No Java Applet Proprietary
(Free) Independent

* Free of charge only for academic and non-commercial use.

Table 1:

Available spatial network
analysis software for space
syntax

Wang, Liao; Implementing Space Syntax in an Open Source GIS; GRASS GIS Approach

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007

100-14

